Cost modeling example:

- For each noisy infant/child being evaluated the kalman-filtered EEG/ABR improves the chance of obtaining a response at near threshold levels by up to 35%.

- What does this mean in terms of costs?
What’s it worth to you?

• 10 dB closer to true threshold?
 ○ Hearing aid fitting
 ○ Other diagnostic procedures

• 35% increased likelihood of obtaining a response?
 ○ Covert that to audiology time: estimate saving 10 minutes per patient
 ○ If cost of an eval is $600/hour (all overheads considered) then that is $100/patient.
A conservative example

- 3 natural sleep ABRs/day @ $600.00/test

- Advanced signal processing (kalman+\textit{in-situ} amplifier) results in a 35% increased likelihood of being able to obtain a near threshold response during steady or intermittent noise.

- This could translate to 10 minutes of time saving/test.

- $300.00 savings/day.
The Jackpot

- For every patient that can be tested without sedation/anesthesia, the cost savings is up to $5,000.00/test.

 - Given your case-load, how many patients/month would be eligible for natural sleep (or moderately quiet wakefulness) ABRs?
Other scenarios

- Ability to obtain an ABR at 20-30 dB nHL in a moderately wakeful may result in cost savings if combined with:
 - Tympanometry results
 - OAE results

- If a “pass” for these quasi-screening results, then it may be more appropriate to follow the infant using behavioral methods.
Features of the system we did not test

- Wireless connection (blue-tooth)
- 1 vs. 2 channels
How much cost-savings from use of wireless connection of amplifier to computer?

- We did not test this feature in our lab or clinic-based verification studies.
- The comparison data are obvious
 - 100% performance for wireless system
 - 0% performance for conventional hard-wired system.
- How many times did you wish you could test an infant while driving them around in a car to induce sleep??
 - N= 1 (me)
 - About 1,000,000
Currently, the wireless system is limited to 1-channel.

Does the benefit of wireless out-weigh the cost of having only 1 channel?
- How often do you use information from the second channel?
- Put a $$ value on that and compare it to your estimated value of the wireless connection.

Positive or negative net effect?
Costs and benefits must be considered on a “practice-pattern” basis.

Costs and benefits can be modeled using strict or lax criteria.

- Strict criteria = conservative estimate of savings
- Lax criteria = greater estimate of savings

Empirical data suggests up to a 35% “advantage” for kalman-filtered + in-situ amplifier (2 features of Vivosonic) ABR.

Other features (e.g. wireless) may result in additional benefits/cost-savings but should be calculated with respect to limitations (e.g., 1-channel).